DCM Boost变换器升压电感及输出电解电容的准在线监测研究文献综述
在现代工业中,电力电子系统在众多领域中发挥重要作用,开关电源与线性电源相比,常工作在开关频率,由于工作频率高,变压器较小,整个电源体积比较小,造成的损耗也比较小,效率较高,因此开关电源广泛应用于交通运输、航天航空、武器装备等电子系统。本文主要研究的是二级DC/DC变换器中的非隔离变换器Boost变换器。 一般情况下,为了稳定输出电压,降低输出电压纹波和平衡输入输出功率,DC/DC变换器输出需要并联储能电容,因为在同样定额电压和电容值情况下,电解电容体积和成本比较其他种类的电容而言相对较小,所以常选电解电容作为储能电容。电解电容寿命非常有限,容易导致开关电源系统失效率。 因此,为了针对电解电容对整个开关电源系统可能造成的影响,本课题主要研究DCM升压变换器升压电感及输出电容的监测方法及装置。通过建立电解电容的模型,对电解电容的工作状况进行分析,设计电解电容参数监测的具体方法,达到对其使用寿命或有效期限进行早期预估的目的,从而可以及早采取相应的预防和维护措施。
开关电源(SMPS)一直是电子电气行业的重要组成部分,它们的高效率,小尺寸和重量。电解电容通常是开关电源中最薄弱的部分。随着电解质的挥发,电容(C)将减小,等效串联电阻(ESR)将逐渐增加。通常,当电容降低到80%,或者ESR在相同温度下增加到初始值的2-3倍时,可以认为电容器已经失效。因此,识别电解电容的ESR和C并预测其寿命非常重要。 近年来,对电力变换器等电子设备中电解电容的参数监测和故障检测进行了大量研究。 其中一个是离线方法。电解电容器由与电阻器串联的正弦电压源供电。 ESR和C可以根据电容器电压和电流定义的阻抗矢量获得离散傅里叶变换(DFT)。在[11]中,使用功率放大器和信号发生器产生具有所需频率的正弦波形,以馈送RC电路。根据正弦波形和电容器的电压,可以使用Newton-Raphson方法计算ESR和C.在[12]中,降压转换器与正弦脉冲宽度调制器(SPWM)一起使用。通过使用DFT,可以获得具有所需频率的电容器电流和电压的幅度和相位,从而计算出ESR。 另一种是在线技术。在[13]中,由于阻抗之间的优势差异,ESR和C可以通过电容器纹波电压和低频和中频电流的RMS值获得。 [14-19]提出通过除法或快速傅里叶变换(FFT)分析的ESR监测,其中包括电容器电压和电流的幅度。在[20-23]中,ESR检测基于电容器的交流损耗,该损耗由电容器电流,电压,温度和热阻计算得出。在[24]中,可以通过希尔伯特变换分析纹波电压和电流来计算ESR。在特定的SMPS中,电感纹波电流的绝对值可以视为常数。结果,电容器电压纹波是退化的特征参数[25-26]。在[27]中,开关电流和电容器电压纹波被采样以进行ESR计算。通过对升压转换器的输入电流和输出纹波电压进行采样,ESR和C由DSP获得[28]。在[29-30]中,电容器电流是根据电感电流得到的,然后通过卡尔曼滤波算法结合电容器纹波电压得到ESR和C.在[31]中,开发了基于热老化测试的物理退化模型,一旦电容减量达到故障阈值,电容器就可以被认为是无用的。对于DSP控制的三相AC / DC PWM转换器,通过注入低频谐波电流,[32]提出了一种基于直流总线电压和输入电流的递归最小二乘(RLS)算法计算ESR的方法。在[33-36]中,基于在线电容估计方案获得状态监测系统。通过测量电容器的内部气体压力和温度,计算出电解质体积并相应地获得ESR [37-41]。 与离线相比,在线方法具有无需停止转换器操作,在不同操作条件下实时监测ESR和C变化等优点。除了现有开关电流信号可用于具有电流模式控制的转换器外,还应安装附加电流传感器用于在线方法,以便可以检测电容器或电感器电流。 |
参考文献 [1] 阮新波, 严仰光. 直流开关电源的软开关技术[M]. 北京: 科学出版社,2000. [2] 张占松, 蔡宣三. 开关电源的原理与设计[M].. 北京: 电子工业出版社, 1988年. [3] 严百平,刘健,程红丽. 不连续导电模式高功率因数开关电源[M]. 北京: 科学出版社,2000. [4] 周志敏,周纪海,纪爱华. 开关电源功率因数校正电路设计与应用[M]. 北京:人民邮电出版社,2004. [5] Garcia O, Cobos J A, Prieto R, Alou P, Uceda J. Single phase power factor correction: a survey. IEEE Transactions on Power Electronics, 2003, 18(3): 749-755. [6] Yang Z, Sen P C. Recent developments in high power factor switch-mode converters. Proc. IEEE Canadian Conf. Electrical Computer Engineering, 1998: 477-488. [7] A. M. R. Amaral, A. J. M. Cardoso, “Using Newton-Raphson Method to estimate the condition of aluminum electrolytic capacitors,” in Proc. IEEE ISIE, Jun. 2007, pp. 827-832. [8] A. M. R. Amaral, A. J. M. Cardoso, “Using a sinosoidal PWM to estimate the ESR of aluminum electrolytic capacitors,” in Proc. IEEE POWERENG, Mar. 2009, pp. 691-696. [9] A. M. Imam , D. M. Divan, R. G. Harley, T. G. Habetler, “Real-time condition monitoring of the electrolytic capacitors for power electronics applications,” in Proc. IEEE APEC, Mar. 2007, pp. 1057-1061. [10] A. M. R. Amaral, A. J. M. Cardoso, “Fault Diagnosis on switch-mode power supplies operating in DCM,” in Proc. IEEE PEMD, Mar. 2004, pp. 197-202. [11] A. Lahyani, P. Venet, G. Grellet, P. J. Viverge, “Failure prediction of electrolytic capacitors during operation of a switch mode power supply,” IEEE Trans. Power Electron.., vol. 13, no. 6, pp. 1199–1207, Nov. 1998. [12] J. M. Anderson, R. W. Cox, J. Noppakunkajorn, “An on-line fault diagnosis method for power electronic drives,” in Proc. IEEE ESTE, Apr. 2011. pp 492-497. [13] V. A. Sankaran, F. L. Rees, C. S. Avant, “Electrolytic capacitor life testing and prediction,” in Proc. IEEE IAS, Oct. 1997, pp. 1058-1065. [14] A. M. R. Amaral, A. J. M. Cardoso, “State condition estimation of aluminum electrolytic capacitors used on the primary side of ATX power supplies,” in Proc. IEEE IECON, Nov. 2009, pp. 442-447. [15] A. M. R. Amaral, A. J. M. Cardoso, “Use of ESR to predict failure of output filtering capacitors in boost converters,” in Proc. IEEE ISIE, May. 2004, pp. 1309-1314. [16] M. A. Vogelsberger, T. Wiesinger, H. Ertl, “Life-cycle monitoring and voltage-managing unit for DC-link electrolytic capacitors in PWM converters,” IEEE Trans. Power Electron.., vol. 26, no. 2, pp. 493–503, Feb. 2011. [17] P. Spanik, M. Frivaldsky, A. Kanovsky, “Life time of the electrolytic capacitors in power applications,” in Proc. IEEE ELEKTR, May 2014, pp. 233-238. [18] Y. G. Zhou, X. R. Ye, G. F. Zhai, “Degradation model and maintenance strategy of the electrolytic capacitors for electronics applications,” in Proc. IEEE PHM, May 2011, pp. 1-6. [19] N. Seliger, “Probabilistic model based analysis of electrolytic capacitor ageing and failures in a single-phase power factor correction circuit,” in Proc. IEEE CIPS, Feb.2014, pp. 1-6. [20] G. H. Wang, Y. Guan, J. Zhang, L. F. Wu, X. Y. Zheng, “ESR estimation method for DC-DC converters based on improved EMD algorithm,” in Proc. IEEE PHM, May. 2012, pp. 1-6. [21] Z. Y. Shi, Y. D. Lu, T. Ning, M. Q. Li, J. D. Feng, Z. W. Zhou, “The Real-time Fault Diagnosis of Electrolytic Filter Capacitors in Switching Mode Power Supply,” in Proc. IEEE IPFA, Jul. 2013, pp. [22] Y. M. Chen, H. C. Wu, M. W. Chou, K. Y. Lee, “Online Failure Prediction of the Electrolytic Capacitor for LC Filter of Switching-Mode Power Converters,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 400–406, Jan. 2011. [23] H. M. Pang, P. M. H. Bryan, “A life prediction scheme for electrolytic capacitors in power converters without current sensor,” in Proc. IEEE APEC, Feb. 2010, pp. 973-979. [24] G. M. Buiatti, J. A. Martín-Ramos, C. H. R. Garcia, A. M. R. Amaral, “An Online and Noninvasive Technique for the Condition Monitoring of Capacitors in Boost Converters,” IEEE Trans. Instrumentation and Measurement., vol. 59, no. 8, pp. 2134–2143, Aug. 2011. [25] K. Abdennadher, P. Venet, G. Rojat, J.-M. Retif, “A Real Time Predictive Maintenance System of Aluminium Electrolytic Capacitors Used in Uninterrupted Power Supplies,” in Proc. IEEE IAS, Oct. 2008, pp. 1-6. [26] K. Abdennadher, P. Venet, G. Rojat, J.-M. Retif, “Online monitoring method and electrical parameter ageing laws of aluminium electrolytic capacitors used in UPS,” in Proc. IEEE PEP, Sept. 2009, pp. 1-9. [27] C. S. Kulkarni, J. R. Celaya, G. Biswas, K. Goebel, “Physics based Modeling and Prognostics of Electrolytic Capacitors,” in Proc. AIAA. 2012, pp. 1-14. [28] X. S. Pu, T. H. Nguyen, D. C. Lee, K. B. Lee, “Fault Diagnosis of DC-Link Capacitors in Three-Phase AC/DC PWM Converters by Online Estimation of Equivalent Series Resistance,” IEEE Trans. Ind. Electron.., vol. 60, no. 9, pp. 4118–4127, Sept. 2013. [29] A. Wechsler, B. C. Mecrow, D. J. Atkinson, J. W. Bennett, M. Benarous, “Condition Monitoring of DC-Link Capacitors in Aerospace Drives,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1866-1874, Nov. 2012. [30] D.-C. Lee, K.-J. Lee, J.-K. Seok, J.-W. Choi, “Online capacitance estimation of DC-link electrolytic capacitors for three-phase AC/DC/AC PWM converters using recursive least squares method,” IET Trans. Electric Power Appl., vol. 152, no. 6, pp. 1503-1508, Nov. 2005. [31] J.-J. Moon, W.-S. Im, J.-M. Kim, “Capacitance Estimation of DC-Link Capacitor in Brushless DC Motor Drive Systems,” in Proc. IEEE ECCE Asia, Jun. 2013, pp. 525-529. [32] T. H. Nguyen, D.-C. Lee, “Deterioration Monitoring of DC-Link Capacitors in AC Machine Drives by Current Injection,” IEEE Trans. Power Electron.., vol. 30, no. 3, pp. 1126–1130, Mar. 2015. [33] M. L. Gasper, “Life Prediction Modeling of Bus Capacitors in AC Variable-Frequency Drives,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1430-1435, Nov. 2005. [34] M. L. Gasperi, “Life prediction model for aluminum electrolytic capacitors,” in Proc. IEEE IAS, Oct. 1996, pp. 1347-1351. [35] M. L. Gasperi, “Life prediction modeling of bus capacitors in AC variable-frequency drives,” in Proc. IEEE PPIC, Jun. 2005, pp. 141-146. [36] M. L. Gasperi, N. Gollhardt, R. Sladky, “A model for equivalent series resistance in aluminum electrolytic capacitors,” in Proc. IEEE CARTS, Mar. 1997, pp. 71-75. [37] S. A. Khan, N. Khera, T. Islam, A. K. Agarwala, “An Online Method for Condition Based Maintenance of Aluminum Electrolytic Capacitors,” in Proc. IEEE RAECS, Mar. 2014, pp. 1-5 .662-665. [38] Y. M. Chen, H. C. Wu, M. W. Chou, K. Y. Lee, “Online Failure Prediction of the Electrolytic Capacitor for LC Filter of Switching-Mode Power Converters,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 400–406, Jan. 2011. [39] H. M. Pang, P. M. H. Bryan, “A life prediction scheme for electrolytic capacitors in power converters without current sensor,” in Proc. IEEE APEC, Feb. 2010, pp. 973-979. [40] G. M. Buiatti, J. A. Martín-Ramos, C. H. R. Garcia, A. M. R. Amaral, “An Online and Noninvasive Technique for the Condition Monitoring of Capacitors in Boost Converters,” IEEE Trans. Instrumentation and Measurement., vol. 59, no. 8, pp. 2134–2143, Aug. 2011. [41] K. Abdennadher, P. Venet, G. Rojat, J.-M. Retif, “A Real Time Predictive Maintenance System of Aluminium Electrolytic Capacitors Used in Uninterrupted Power Supplies,” in Proc. IEEE IAS, Oct. 2008, pp. 1-6. [42] K. Abdennadher, P. Venet, G. Rojat, J.-M. Retif, “Online monitoring method and electrical parameter ageing laws of aluminium electrolytic capacitors used in UPS,” in Proc. IEEE PEP, Sept. 2009, pp. 1-9. [43] C. S. Kulkarni, J. R. Celaya, G. Biswas, K. Goebel, “Physics based Modeling and Prognostics of Electrolytic Capacitors,” in Proc. AIAA. 2012, pp. 1-14. [44] X. S. Pu, T. H. Nguyen, D. C. Lee, K. B. Lee, “Fault Diagnosis of DC-Link Capacitors in Three-Phase AC/DC PWM Converters by Online Estimation of Equivalent Series Resistance,” IEEE Trans. Ind. Electron.., vol. 60, no. 9, pp. 4118–4127, Sept. 2013. |
以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。